# Frequency domain representation of a Wide Band FM

To obtain the frequency-domain representation of Wide Band FM signal for the condition $\beta&space;>&space;>&space;1$ one must express the FM signal in complex representation (or) Phasor Notation (or) in the exponential form

i.e, Single-tone FM signal is $S_{FM}(t)=A_{c}cos(2\pi&space;f_{c}t+\beta&space;sin&space;2\pi&space;f_{m}t).$

Now by expressing the above signal in terms of  Phasor notation ($\because&space;\beta&space;>&space;>&space;1$ , None of the terms can be neglected)

$S_{FM}(t)&space;\simeq&space;Re(A_{c}e^{j(2\pi&space;f_{c}t+\beta&space;sin&space;2\pi&space;f_{m}t)})$

$S_{FM}(t)&space;\simeq&space;Re(A_{c}e^{j2\pi&space;f_{c}t}e^{j\beta&space;sin&space;2\pi&space;f_{m}t})$

$S_{FM}(t)&space;\simeq&space;Re(e^{j2\pi&space;f_{c}t}&space;A_{c}e^{j\beta&space;sin&space;2\pi&space;f_{m}t})-------Equation(I)$

Let    $\widetilde{s(t)}&space;=A_{c}e^{j\beta&space;sin&space;2\pi&space;f_{m}t}$      is the complex envelope of FM signal.

$\widetilde{s(t)}$ is a periodic function with period $\frac{1}{f_{m}}$ . This $\widetilde{s(t)}$ can be expressed in it’s Complex Fourier Series expansion.

i.e, $\widetilde{S(t)}&space;=&space;\sum_{n=-\infty&space;}^{\infty&space;}C_{n}&space;e^{jn\omega&space;_{m}t}$  this approximation is valid over $[-\frac{1}{2f_{m}},\frac{1}{2f_{m}}]$ . Now the Fourier Coefficient  $C_{n}&space;=&space;\frac{1}{T}&space;\int_{\frac{-T}{2}}^{\frac{T}{2}}&space;\widetilde{S(t)}&space;e^{-jn2\pi&space;f_{m}t}dt$

$T=&space;\frac{1}{f_{m}}$

$C_{n}&space;=&space;\frac{1}{\frac{1}{f_{m}}}&space;\int_{\frac{-1}{2f_{m}}}^{\frac{1}{2f_{m}}}&space;\widetilde{S(t)}&space;e^{-jn2\pi&space;f_{m}t}dt$

$C_{n}&space;=&space;f_{m}&space;\int_{\frac{-1}{2f_{m}}}^{\frac{1}{2f_{m}}}&space;A_{c}e^{j\beta&space;sin&space;2\pi&space;f_{m}t}&space;e^{-jn2\pi&space;f_{m}t}dt$

$C_{n}&space;=&space;f_{m}&space;\int_{\frac{-1}{2f_{m}}}^{\frac{1}{2f_{m}}}&space;A_{c}e^{{j\beta&space;sin&space;2\pi&space;f_{m}t-jn2\pi&space;f_{m}t}}dt$

$C_{n}&space;=&space;f_{m}&space;\int_{\frac{-1}{2f_{m}}}^{\frac{1}{2f_{m}}}&space;A_{c}e^{j({\beta&space;sin&space;2\pi&space;f_{m}t-n2\pi&space;f_{m}t})}dt$

let $x=2\pi&space;f_{m}t$       implies   $dx=2\pi&space;f_{m}dt$

as $x\rightarrow&space;\frac{-1}{2f_{m}}&space;\Rightarrow&space;t\rightarrow&space;-\pi$     and    $x\rightarrow&space;\frac{1}{2f_{m}}&space;\Rightarrow&space;t\rightarrow&space;\pi$

$C_{n}&space;=&space;\frac{A_{c}}{2\pi&space;}&space;\int_{-\pi&space;}^{\pi&space;}&space;e^{j({\beta&space;sin&space;x-nx})}dx$

let $J_{n}(\beta&space;)&space;=&space;\frac{1}{2\pi&space;}&space;\int_{-\pi&space;}^{\pi&space;}&space;e^{j({\beta&space;sin&space;x-nx})}dx$   as    $n^{th}$  order Bessel Function of first kind then   $C_{n}&space;=&space;A_{c}&space;J_{n}(\beta&space;)$.

Continuous Fourier Series  expansion of

$\widetilde{S(t)}&space;=&space;\sum_{n=-\infty&space;}^{\infty&space;}C_{n}&space;e^{jn\omega&space;_{m}t}$

$\widetilde{S(t)}&space;=&space;\sum_{n=-\infty&space;}^{\infty&space;}A_{c}&space;J_{n}&space;(\beta&space;)e^{jn\omega&space;_{m}t}$

Now substituting this in the Equation (I)

$S_{WBFM}(t)&space;\simeq&space;Re(e^{j2\pi&space;f_{c}t}&space;\sum_{n=-\infty&space;}^{\infty&space;}A_{c}&space;J_{n}&space;(\beta&space;)e^{jn\omega&space;_{m}t})$

$S_{WBFM}(t)&space;\simeq&space;A_{c}&space;Re(&space;\sum_{n=-\infty&space;}^{\infty&space;}J_{n}&space;(\beta&space;)&space;e^{j2\pi&space;f_{c}t}&space;e^{jn\omega&space;_{m}t})$

$S_{WBFM}(t)&space;\simeq&space;A_{c}&space;Re(&space;\sum_{n=-\infty&space;}^{\infty&space;}J_{n}&space;(\beta&space;)&space;e^{j2\pi&space;(f_{c}+nf&space;_{m}t)})$

$\therefore&space;S_{WBFM}(t)&space;\simeq&space;A_{c}&space;\sum_{n=-\infty&space;}^{\infty&space;}J_{n}&space;(\beta&space;)&space;cos&space;2\pi&space;(f_{c}+nf&space;_{m}t)$

The  Frequency spectrum  can be obtained by taking Fourier Transform

$S_{WBFM}(f)&space;=&space;\frac{A_{c}}{2}\sum_{n=-\infty&space;}^{\infty&space;}J_{n}(\beta&space;)&space;$

 n value wide Band FM signal 0 $S_{WBFM}(f)&space;=&space;\frac{A_{c}}{2}\sum_{n=-\infty&space;}^{\infty&space;}J_{0}(\beta&space;)&space;$$S_{WBFM}(f)&space;=&space;\frac{A_{c}}{2}\sum_{n=-\infty&space;}^{\infty&space;}J_{0}(\beta&space;)&space;$ 1 $S_{WBFM}(f)&space;=&space;\frac{A_{c}}{2}\sum_{n=-\infty&space;}^{\infty&space;}J_{1}(\beta&space;)&space;$$S_{WBFM}(f)&space;=&space;\frac{A_{c}}{2}\sum_{n=-\infty&space;}^{\infty&space;}J_{1}(\beta&space;)&space;$ -1 $S_{WBFM}(f)&space;=&space;\frac{A_{c}}{2}\sum_{n=-\infty&space;}^{\infty&space;}J_{-1}(\beta&space;)&space;$$S_{WBFM}(f)&space;=&space;\frac{A_{c}}{2}\sum_{n=-\infty&space;}^{\infty&space;}J_{-1}(\beta&space;)&space;$ … ….

From the above Equation it is clear that

• FM signal has infinite number of side bands at frequencies $(f_{c}\pm&space;nf_{m})$for n values changing from $-\infty$ to  $\infty$.
• The relative amplitudes of all the side bands depends on the value of  $J_{n}(\beta&space;)$.
• The number of significant side bands depends on the modulation index $\beta$.
• The average power of FM wave is $P=\frac{A_{c}^{2}}{2}$ Watts.

(No Ratings Yet)