Example Problems in Electro Magnetic Theory Wave propagation

  1. A medium like Copper conductor which is characterized by the parameters \bg_black \sigma = 5.8 X 10^{7} Mho's/meter and \epsilon _{r}=1,\mu _{r}=1 uniform plane wave of frequency 50 Hz. Find \alpha ,\beta ,v,\eta  and \lambda.

Ans.  Given \bg_black \bg_black \sigma = 5.8 X 10^{7} Mho's/meter  ,     \bg_black \epsilon _{r}=1,\mu _{r}=1    and \bg_white f= 50 Hz

\bg_white \alpha =? ,\beta =? ,v = ?,\eta =? and \bg_white \lambda =?

Find the Loss tangent \bg_white \frac{\sigma }{\omega \epsilon } = \frac{5.8X 10^{7}}{2 \pi X50X\epsilon _{o}\epsilon _{r}}

                                              \bg_white \bg_white \frac{\sigma }{\omega \epsilon } = \frac{5.8X 10^{7}}{100\pi X\epsilon _{o}}

                                            \bg_white \bg_white \frac{\sigma }{\omega \epsilon } = 2.08 X 10 ^{16}> > 1

So given medium is a Conductor (Copper)

then \bg_white \alpha (or) \beta =\sqrt{\frac{\omega \mu \sigma }{2}}

                         \bg_white =\sqrt{\frac{5.8X10^{7}X2\pi X 50X\mu _{o}}{2}}

                      \bg_white \alpha = 106.99  , \bg_white \beta =106.99.

\bg_white v_{p}=\frac{\omega }{\beta }  \bg_white =\frac{2\pi X50}{106.99}\bg_white =2.936 meters/Sec.

\bg_white \lambda =\frac{2\pi }{\beta }=\frac{2\pi }{106.99}=0.0587 meters.

\bg_white \eta =\sqrt{\frac{j\omega \mu }{(\sigma +j\omega \epsilon )}}

    \bg_white =\sqrt{\frac{jX2\pi X50X\mu _{o}}{(5.8X10^{7}+j2\pi X50X\epsilon _{o})}}

    \bg_white = \sqrt{\frac{j 3.947 X10^{-4}}{(5.8X10^{7}+j 2.78 X10^{-9})}}

    \bg_white = \sqrt{\frac{ 3.947 X10^{-4}\angle 90^{o}}{(5.8X10^{7}\angle -2.74 X 10^{-15})}}

    \bg_white = \sqrt{0.68 X10 ^{-11}}\angle \frac{90-(2.74 X 10^{-5})}{2}

\eta = 2.6 X 10^{-6}\angle 45^{o}.

2. If \bg_white \epsilon _{r}=9,\mu =\mu _{o} for a medium in which a wave with a frequency of \bg_white f= 0.3 GHz is propagating . Determine the propagation constant and intrinsic impedance of the medium when \bg_white \sigma =0.

Ans: Given \bg_white \epsilon _{r}=9,  \bg_white \mu =\mu _{o} , \bg_white f=0.3GHz and \bg_white \sigma =0.

\bg_white \gamma =?,\eta =?

Since \bg_white \sigma =0, the given medium is a lossless Di-electric.

which implies \bg_white \alpha = \frac{\sigma }{2}\sqrt{\frac{\mu }{\epsilon }} =0.

\bg_white \beta = \omega \sqrt{\mu \epsilon }

    \bg_white =2\pi X o.3X10^{9}\sqrt{\mu _{o}X9\epsilon _{o}}

    \bg_white = 18.86.

\bg_white \eta = \sqrt{\frac{\mu }{\epsilon }}

\bg_white \eta = \sqrt{\frac{\mu_{o}\mu _{r} }{\epsilon_{o}\epsilon _{r} }}

\bg_white \eta = \sqrt{\frac{\mu_{o} }{9\epsilon_{o} }}

\bg_white \eta = \frac{120\pi }{3}

\bg_white \eta = 40 Ω.


1 Star2 Stars3 Stars4 Stars5 Stars (1 votes, average: 5.00 out of 5)



Author: Lakshmi Prasanna

Completed M.Tech in Digital Electronics and Communication Systems and currently working as a faculty.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.