Application of Ampere’s circuit law-infinite sheet of current

consider an infinite sheet in the z=0 plane, which has uniform current density  \overrightarrow{k} = k_{y}\overrightarrow{a_{y}}    A/m .

Let us suppose the current is flowing in the positive y direction.

the sheet of current is assumed to be in rectangular co-ordinate system

\overrightarrow{H} = H_{x}\overrightarrow{a_{x}}+H_{y}\overrightarrow{a_{y}}+H_{z}\overrightarrow{a_{z}}

Let us suppose the conductor is carrying a current I , by right hand thumb rule magnetic field is produced around the conductor is right angles to the direction of I.

In this case of infinite sheet , the current is in the y-direction there is no component of H along the direction of y  and also the z components cancel each other because of opposite direction of the fields produced so only x components of H exists.

\overrightarrow{H} = \left\{\begin{matrix} H_{o}\ \overrightarrow {a_{x}} \ for \ z>0\\ -H_{o}\ \overrightarrow {a_{x}} \ for \ z<0 \end{matrix}\right.

from Ampere’s Circuit law  \oint \overrightarrow{H}. \overrightarrow{dl} = \int \left (\overrightarrow{H}_{1-2}. \overrightarrow{dl}_{1-2} +\overrightarrow{H}_{2-3}. \overrightarrow{dl}_{2-3}+\overrightarrow{H}_{3-4}. \overrightarrow{dl}_{3-4}+\overrightarrow{H}_{4-1}. \overrightarrow{dl}_{4-1} \right ) .

the component \oint \overrightarrow{H}. \overrightarrow{dl} = \int \left (\overrightarrow{H}_{1-2}. \overrightarrow{dl}_{1-2} +\overrightarrow{H}_{2-3}. \overrightarrow{dl}_{2-3}+\overrightarrow{H}_{3-4}. \overrightarrow{dl}_{3-4}+\overrightarrow{H}_{4-1}. \overrightarrow{dl}_{4-1} \right )

\overrightarrow{H}_{1-2}. \overrightarrow{dl}_{1-2}= \overrightarrow{H}_{1-0}. \overrightarrow{dl}_{1-0}+\overrightarrow{H}_{0-2}. \overrightarrow{dl}_{0-2}

\overrightarrow{H}_{1-2}. \overrightarrow{dl}_{1-2}= H_{o} \overrightarrow{a_{x}}.(\frac{a}{2})(-\overrightarrow{a_{z}})- H_{o} \overrightarrow{a_{x}}.(\frac{a}{2})(-\overrightarrow{a_{z}}) .

\overrightarrow{H}_{1-2}. \overrightarrow{dl}_{1-2}=0 .

similarly \overrightarrow{H}_{3-4}. \overrightarrow{dl}_{3-4} =0 .

\therefore \oint \overrightarrow{H}. \overrightarrow{dl} = \int \left (\overrightarrow{H}_{2-3}. \overrightarrow{dl}_{2-3}+\overrightarrow{H}_{4-1}. \overrightarrow{dl}_{4-1} \right) .

\oint \overrightarrow{H}. \overrightarrow{dl} = -(H_{o}\ \overrightarrow{a_{x}}).(b \ -\overrightarrow{a_{x}})+(H_{o}\ \overrightarrow{a_{x}}).(b \ \overrightarrow{a_{x}}) .

\oint \overrightarrow{H}. \overrightarrow{dl} = 2H_{o}\ b .

I= 2H_{o} \ b .

k_{y}\ b = 2H_{o} \ b .

H_{o} =\frac{1}{2} k_{y} .

 as   \overrightarrow{H} = \left\{\begin{matrix} H_{o}\ \overrightarrow {a_{x}} \ for \ z>0 \\ -H_{o}\ \overrightarrow {a_{x}} \ for \ z<0 \end{matrix}\right.

this will be changed to \overrightarrow{H} = \left\{\begin{matrix} \frac{1}{2} k_{y}\ \overrightarrow {a_{x}} \ for \ z>0 \\ -\frac{1}{2} k_{y}\ \overrightarrow {a_{x}} \ for \ z<0 \end{matrix}\right.

In general for a finite sheet of current density  \overrightarrow{k}  A/m  Magnetic field is generalised as     \overrightarrow{H} = \frac{1}{2} (\overrightarrow{k} X \overrightarrow{a_{n}}) .

1 Star2 Stars3 Stars4 Stars5 Stars (No Ratings Yet)

Loading...

Advertisements

Author: Lakshmi Prasanna Ponnala

Completed M.Tech in Digital Electronics and Communication Systems and currently working as a faculty.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.