# Capture effect in Frequency Modulation

The Amplitude Modulation schemes like AM,DSB-SC and SSB-SC systems can not handle inherent Non-linearities in a really good manner where as FM can handle it very well.

Let us suppose un Modulated FM carrier $S(t)&space;=&space;A_{c}cos\omega&space;_{c}(t)$

$S(t)&space;=&space;A_{c}cos(\omega&space;_{c}(t)+\phi&space;(t))$

By considering un modulated FM carrier in terms of frequency(by neglecting phase) i.e $S(t)&space;=&space;A_{c}cos&space;(\omega&space;_{c}t)$ has been interfered by a near by interference located at a frequency $(\omega&space;_{c}+\omega&space;)$ where $\omega$ is a small deviation from $\omega&space;_{c}$.

the nearby inerference is $I&space;cos(\omega&space;_{c}&space;+&space;\omega&space;)t$

when the original signal got interfered by this near by interference , the received signal is $r(t)=&space;A_{c}cos&space;\omega&space;_{c}t&space;+&space;I&space;cos(\omega&space;_{c}+\omega&space;)t$

$r(t)=&space;(A+&space;I&space;cos&space;\omega&space;t)cos&space;\omega&space;_{c}t&space;-I&space;sin&space;\omega&space;t&space;sin\omega&space;_{c}t$   Let $A_{c}=A$

$r(t)&space;=&space;E_{r}(t)&space;cos&space;(\omega&space;_{c}t+\Psi&space;_{d}(t))$

now the phase of the signal is $\Psi&space;_{d}(t)&space;=&space;tan^{-1}&space;(\frac{I&space;sin&space;\omega&space;t}{A+I&space;cos&space;\omega&space;t&space;})$

as $A>&space;>&space;I$ implies $\frac{I}{A}<&space;<&space;1$

$\Psi&space;_{d}(t)&space;=&space;tan^{-1}&space;(\frac{I&space;sin&space;\omega&space;t}{A})$

since $\frac{I}{A}<&space;<&space;1$ , $\tan&space;^{-1}\theta&space;=&space;\theta$

$\Psi&space;_{d}(t)&space;\approx&space;\frac{I&space;sin&space;\omega&space;t}{A}$

As the demodulated signal is the output of a discriminator $y&space;_{d}(t)&space;=\frac{d}{dt}&space;(\frac{I&space;sin&space;\omega&space;t}{A})$

$y&space;_{d}(t)&space;=\frac{I\omega&space;}{A}&space;({cos&space;\omega&space;t})$ , which is the detected at the output of the demodulator.

the detected output at the demodulator is $y_{d}(t)$ in the absence of message signal  i.e, $m(t)=0$.

i.e, when message signal is not being transmitted at the transmitter but detected some output $y_{d}(t)$ which is nothing but the interference.

As ‘A’ is higher the interference is less at t=0 the interference is $\frac{I\omega&space;}{A}$ and is a linear function of $\omega$, when $\omega$ is small interference is less. That is $\omega$ is closer to $\omega&space;_{c}$ interference is less in FM.

Advantage of FM :- is Noise cancellation property , any interference that comes closer with the carrier signal (in the band of FM) more it will be cancelled. Not only that it overridden by the carrier strength $A_{c}$ but also exerts more power in the demodulated signal.

This is known as ‘Capture effect’ in FM which is a very good property of FM. Over years it has seen that a near by interference is 35 dB less in AM where as the near by interference in FM is 6 dB less this is a big advantage.

Two more advantages of FM over AM are:

1. Non-linearity in the Channel ,FM cancels it very nicely due to it’s inherent modulation and demodulation technique.
2. Capture effect( a near by interference) FM overrides this by $A_{c}$.
3. Noise cancellation.

(1 votes, average: 5.00 out of 5)