# Conductivity of a Semi conductor

In a pure Semi conductor number of electrons = number of holes. Thermal agitation (increase in temperature) produces new electron-hole pairs and these electron-hole pair combines produces new charge particles.

one particle is of negative charge which is known as free electron with mobility $\mu&space;_{n}$ another in with positive charge known as free hole with mobility $\mu&space;_{p}$.

two particles moves in opposite direction in an electric field $\overrightarrow{E}$ and constitutes a current.

The total current density (J) with in the semi conductor.

$\overrightarrow{J}&space;=&space;\overrightarrow{J_{n}}&space;+&space;\overrightarrow{J_{p}}$

Total conduction current density = conduction current density due to electrons + conduction current density due to holes.

$J_{n}=&space;nq\mu&space;_{n}E$.

$J_{p}=&space;pq\mu&space;_{p}E$.

n- number of electrons/Unit-Volume.

p-number of holes/Unit-Volume.

E- applied Electric field strength V/m.

q-charge of electron/hole $\approx&space;1.6X10^{-19}C.$

$J&space;=&space;nq\mu&space;_{n}E&space;+pq\mu&space;_{p}E$.

$J&space;=&space;(n\mu&space;_n&space;+p\mu&space;_{p})qE$.

$J=\sigma&space;E$.

where $\sigma&space;=&space;(n\mu&space;_{n}+p\mu&space;_{p})q$ is the conductivity of semi conductor.

Intrinsic Semi conductor:-

In an  intrinsic semi conductor $n=p=n_{i}$

$\therefore$ conductivity $\sigma&space;_{i}=&space;(n_{i}\mu&space;_{n}+&space;n_{i}\mu&space;_{p})q$

$\sigma&space;_{i}=&space;n_{i}(\mu&space;_{n}+&space;\mu&space;_{p})q$

where $J_{i}$ is the current density in an intrinsic semi conductor $J_{i}&space;=&space;\sigma&space;_{i}&space;E$

Conductivity in N-type semi conductor:-

In N-type $n>&space;>&space;p$

number of electrons $>&space;>$ number of holes

$\therefore&space;\sigma&space;_{N}\simeq&space;n\mu&space;_{n}q$

$J&space;_{N}=&space;n\mu&space;_{n}q$.

Conductivity in P-type semi conductor:-

In P-type $p>&space;>&space;n$

number of holes $>&space;>$ number of electrons

$\therefore&space;\sigma&space;_{p}&space;\approx&space;p\mu&space;_{p}q$.

$J_{P}=&space;p\mu&space;_{p}q&space;E$.

(No Ratings Yet)

## Author: Lakshmi Prasanna Ponnala

Completed M.Tech in Digital Electronics and Communication Systems and currently working as a faculty.